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The X-ray Evaluation of Axially Symmetric Distributions of
Fibres in Preferred Orientations

By E. J. W. WHITTAKER
Ferodo Ltd., Chapel-en-le-Frith, Stockport, England

(Received 16 July 1962)

The intensity distribution in a reflection from a distribution of fibres which is arranged symmetrically
about an axis is analyzed in terms of the population density of fibre directions, and a convenient
numerical method is developed for the inversion of such an intensity distribution into the corre-
sponding population-density distribution. It is pointed out that the coaxial camera of Hawes has the
most advantageous geometry for preferred-orientation studies of this type.

1. Introduction

A crystalline material with a perfectly oriented fibre
texture is considered to contain crystallites rotated
into all possible azimuths about the fibre axis. Its
representation in reciprocal space therefore consists
of circles lying on the layer planes perpendicular
to the fibre axis. If the fibre orientation is imperfect
there will be a distribution of the directions of the
fibre axes, each of which will be accompanied in
reciprocal space by such an array of circles. The
intensity distribution in any given reflection from
such a distribution of fibres will therefore depend
on the density distribution of the intersections with
the sphere of reflection of the corresponding member
of these arrays of circles.

2. Diffraction from a fibre of arbitrary direction

Let the mean fibre axis be along OZ, perpendicular
to the X-ray beam along OY, and, together with these
directions, let OX define a right-handed set of axes.
Consider a fibre axis in the direction 0@ (Fig. 1) such

that ZOQ— « and XOR = B, where R is the projection

of Q on the plane X0Y. Consider a circle in reciprocal
space, of radius &, lying on a plane perpendicular
to 0Q, and distant { from 0. Let this circle cut the
sphere of reflection (centred at C(0, —1,0) and of
unit radius) at P. Let a plane through P parallel to
XOZ cut the y-axis at B and the circle Qf intersection
of the sphere with XOY at N. Let PBN=g.

From the usual considerations of the geometry of
the sphere of reflection

cos Q6P= £/(2 sin 0)
and the direction cosines of OP and OQ are

(cos B cos ¢, —sin 0, cos 0 sin @)
and
(sin & cos B, sina sin B, cos«) .
Hence
cos B cos @ sin « cos f—sin f sin & sin B
+cos 0 sin ¢ cos x= /(2 sin ) =cos O singo (1)
where @=go when «=0.
Introducing the substitution

tan y =tan « cos f8

z Q

Fig. 1. OZ is the mean fibre axis. OQ is a fibre axis oriented in a direction defined by (o, f). A circle in
reciprocal space centred on 0@, and perpendicular to it, cuts the sphere of reflection at P.
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and rearranging, we can show that
sin (@+ y)=sin y tan 6 tan #4 (sin o cos y/cos «). (2)
When « is small

siny=y=nxcosf.

Hence
sin (@ + & cos f) = « sin § tan 6+ sin go

and provided that (g+ « cosf) is small

@— @o== o (sin f tan § —cos f)
=(o/cos 0) sin (f+0—37m) . (3)

The range of validity of the approximations will be
examined in § 6 in the light of the use that is made
of this formula. In applying the formula to the forma-
tion of any particular reflection, it may be simplified
by changing the origin of ¢ and f so that

@=osin fcos 0 . (4)

3. The effect of a distribution of fibre directions

Let the population density of fibre directions o(«x)
per unit solid angle be axially symmetrical and there-
fore a function of « only. Then the number in the
range

o« to atdex, B to f+df = o(x)sinadadf .

This will be the number diffracting some particular
reflection in the directions ¢ to @-+d¢p where ¢ is
given by (4), and

dp/df=x cos ffcos § .

Hence the intensity diffracted in the directions ¢ to
@ +dg will be proportional to

o(«) (sin & cos 0/« cos f)dode
= o(x)sin & cos 0 (x2— @2 cos? 0)"tdadp
= xp(x) cos O(a%— @2 cos? )} dady . (5)

If o(x) were given as an explicit function of & one
could therefore integrate the right hand side of (5)
to give the total intensity I(p) as a function of ¢.
The expression is not well adapted, however, for the
evaluation of g(«) from a measured intensity distribu-
tion I(@). A convenient approach is to consider the
effect if o(«) is constant over a limited range i.e.

ola)y=k if 0< <
o(x)=0 if & > &1
Hence

I((p)=kcosﬂs

a1
& (a2 — @2 cos? ) Hdo
@ cos 0

=k cos? 0 («¥ sec? 6 — @2)}. (6)

In this integration it is permissible to use ¢ cos 6
as the lower limit of integration, rather than zero,
because any fibre for which «< ¢ cos§ does not
contribute to the intensity in the direction ¢.
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Fig. 2. Correspondence between a uniform population density
of fibre directions g(«), and the resulting distribution of
X-ray intensity I(g).

|

g(a)

N
AN
I N

o

Fig. 3. Division of an arbitrary function g(x) into components
of uniform population density. Negative components are
shaded.

Thus the intensity profile is a semi-ellipse of height
koycos 6 centred at ¢=0, and with a horizontal
semi-axis of &3 sec . Fig.2 shows the relationship
between a uniform density distribution of fibre
directions and the resulting intensity profile according
to (6), for positive values of ¢. It follows that if any
arbitrary intensity distribution such as that in Fig. 3
were divided into horizontal rectangular areas, positive
or negative, each of these would give rise to an
elliptical intensity profile, positive or negative, and
these could be summed to give the total intensity
profile. Conversely if an arbitrary given intensity
profile could be analyzed as a sum of (positive and
negative) elliptical elements then the corresponding
density distribution of directions could easily be
evaluated.

4. Inversion of the intensity distribution

It must be assumed that the intensity is effectively
zero for @> @n. The procedure is then as follows:

(1) Take the n+1 values of Iy. . .I, at equal inter-
vals @o...@n. From these derive the corresponding =
values of Io—11, ... Inci—In=AL...A41,.

(2) Prepare a master table of values

.....
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where
Yo, r = (n—rP—g)}
AYq, r = Ya-1,r—Ya, 1 -
(3) The amplitude at @=0 of the elliptical compo-

nent of the intensity which extends to @» is then
given by

and

AIn.yo, o/Ayn, o= An.Yo,0.

A, is then the height of the elementary rectangle of
o() which extends to &= gn cos 6.

This will make a contribution As.A4yq, o to each
of the other values of AI,. The elliptical component
which extends to @n-1 can therefore be determined
by taking

An—1=(AIn—1—An-Ayn—l, 0)/Ayn—1, 1 (7)

and this is the height of the elementary rectangle
of g(x) which extends to &= @n-1 €08 6. The process
may be continued step by step, and in general

-1
Ap—q= [AIn—q— %An—pﬁyn—m p] [AYn—q, q - (8)
p=

A convenient numerical procedure is as follows:

(i) Find A4, as above.

(ii) Multiply all the values of Ay, o (the first line
of the Ay table) by A, and enter the products
in the first line of a second similar table of
An—ryq,ro

(iii) Find An-1 from equation (7).

(iv) Multiply all the values of Ayq, 1 by Az and
enter the products in the second line of the
table of .An—ryg, Te

(v) Sum of the values in the (n—1)th column of
this table and hence calculate An—z from
equation (8).

(vi) Continue to calculate successive lines of the
table. Each line leads to the completion of a
further column whose sum can be used in
equation (8) to give the next value of An—q.

4. When all the values of An-¢ have been calculated
the function g(x) can be calculated, in stepped form,
at n+1 equidistant points from «=0 to @ cos 6
from the formula

q
o(xn-q) = %An—q . (9)

5. Check of the numerical method

The arbitrary density distribution shown in Fig. 4(a)
was divided into horizontal rectangles terminating at
17 equally spaced values of the abscissa. The cor-
responding intensity distribution (Fig. 4(b)) was then
calculated by summation of the effects of each of
these rectangular density distributions as given by
equation (6). This intensity distribution was then
inverted back to a density distribution using n=10
and n=7, with the results shown in Fig. 4(c). The
numbers of intervals were chosen to be prime with
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respect to those used in the synthesis of Fig. 4(b)
in order to provide a reasonable test of the method.
Clearly the width of the intervals must not be less
than that of any maximum or minimum which it is
desired to reveal, but within this limitation the
method gives a satisfactory reproduction of the form
of the original density distribution. A value of » in

(@

g

(b)

1)

o)

Fig. 4. (a) Arbitrary population density distribution. (b) Cor-
responding intensity distribution calculated from (a) using
17 intervals. (c¢) Inversion of (b) to population density in
stepped form using 10 intervals (full line) and 7 intervals
(broken line).

the range from 10 to 20 is likely to be suitable for
most purposes. The amount of computation involved
increases as n2. In Fig. 4(c) the heights of the curves
have been scaled to agree with that of Fig. 4(a).
The absolute numerical values obtained by the method
depend not only on the value of » used but also
on the actual form of the o(«x) curve, and cannot
be simply predicted.

6. The range of validity of the approximations
and consideration of errors

The most extreme assumption made in the small-
angle approximations in § 2 is that (p+ o« cosp) is
small. But
|@+ & cos B| < |gl+ | cos B
< lgl+1ol
< 2|¢|
The actual error varies with f, but is always less than

5% for |p|<15° and less than 29, for |p|<10°.
Since it is necessary that 2¢ be small it follows
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that the method is most satisfactory for reflections
on zero layer lines. For a reflection on a non-zero
layer line

tan go = ¢/[sin y (1 — 2)}]

so that the minimum value of @o is obtained when
the azimuth of the reflection, y, is 90°. Even here,
however, the approximations will be valid only for a
very restricted range of «, unless { is very small,
in view of the restrictions on @. Furthermore, since

((77 - (po)max = Oéma,x/COS 7]

it is desirable that cos 6 should be as large as possible.
For reflections on non-zero layer lines it is therefore
desirable to keep y as much smaller than 90° as is
compatible with keeping ¢o small. For reflexions on
the zero layer line it is always better to use fairly
low-angle reflections, though the effect does not
become very important for < 30°.

Fig. 5. The angle ¢ as a function of # for §=45° «=26}°.
The full line shows the true value from equation (2) and the
broken line the approximation of equation (3).

Fig. 5, shows the way in which the approximate
value of ¢ tends to depart from the true value.
To make the separation of the curves clear they
have been calculated for §=45° and «=261°, i.e.
substantially larger than those recommended.

Since a zero-layer-line reflection from a material
with fibrous orientation will usually have its greatest
intensity near ¢ =0 and will fall away to low inten-
sities at large ¢, it follows that the regions in which
the approximations involve the largest errors will be
those of the least significance. Even errors in excess
of 5% may be quite acceptable in these regions, so
that the method may be applied even when gmax > 15°.

In view of the interative nature of the numerical
procedure discussed in §4 it is desirable to ascertain
whether it may introduce cumulative errors. If we
denote the errors in A,—4, AIn—, and Ayp—q, » by
0An—q, 0ln-q and Oyn—q, p respectively, then differ-
entiation of equation (8) leads to
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61 n- a1 AYn—q, »
SAn_n = 2 > A,
" AYn-p, o 272=’0 ? Ayn-q, q
z 0Yn-q,
-2 An_pf ) (10)
p=0 Yn—q,q

The third term involves only the rounding off
errors in the table of Ay.—g, », and these, though
cumulative, may be made as small as we please.
With n in the range 10-20 the effect of this term
will be negligible if the table of Ay is prepared to
three decimal places. The second term then depends
only on the errors arising from éI,-, and (10) may
be expanded into the form

g1
6An-g= Olng S An-pdlnp
Ay"—q,q =0

where the coefficients a,—, are all positive and decrease
monotonically with p. But since the values AI,—, are
successive differences their errors are not independent
and

91
2 6In—p ~ 61n—q+1 .
p=0
Hence
6An—q~ 6171—:1 6In—q+ldyn—q,q—1

AYn—q,q B AYn-g+1,q-14Yn—a,4 )

Therefore the errors 6 do not lead to cumulative errors
in An-q. It follows similarly that the errors are again
non-cumulative when g(aa-g) is evaluated by the
summation of the terms A4,-, in equation (9).

7. Practical considerations

If the diffraction pattern is recorded in a cylindrical
camera of conventional design the intensity distribu-
tion must be measured along a Debye curve of con-
stant 0, and the path length along this curve trans-
formed into terms of ¢. Neither of these processes is
very convenient, and furthermore the intensity distri-
bution along the line will be modified by a varying
obliquity effect. Recording on a flat film perpendicular
to the beam leads to some improvement since the
lines of constant 6 are then circular, but the most
convenient method of recording for orientation studies
is a coaxial camera, such as that described for a
different purpose by Hawes (1959), in which the film
lies on a cylinder coaxial with the beam. Lines of
constant 6 are then straight lines, and ¢ is directly
proportional to distance along these lines.
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